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Sammanfattning

Autonoma bilar är på frammarsch. När förare inte längre har kontroll över
ratten är det avgörande att bilarna själva kan garantera säkerheten för alla tra-
fikanter. Denna studie syftar till att utforma ett komplett styrsystem som kan
utföra en säker omkörning. Omkörningen planeras med hjälp av ramverket för
modell-prediktiv reglering. För att garantera säkerhet används nåbarhetsana-
lys. Slutligen utformas en modifierad proportionell regulator för att följa den
planerade omkörningsvägen. Styrsystemet har implementerats i MATLAB och
hela omkörningen har simulerats. Resultaten visar att det konstruerade styrsy-
stemet utför omkörningen på en rak motorväg med två filer på ett säkert och
framgångsrikt sätt.
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Autonomous Overtaking Using Reachability
Analysis and MPC

John Friberg and Filip Klaesson

Abstract—The era of autonomous cars is on the rise. As
drivers lose control of the steering wheel, it is crucial that the
cars themselves can guarantee safety for all traffic participants.
This study aims to design a complete control system that can
safely perform an overtaking maneuver. To guarantee safety of
the maneuver, reachability calculations will be carried out and
analyzed. The overtaking will be planned by using the model
predictive control, MPC, framework. To complete the control
system a modified proportional controller will be designed to
track the planned path. The control system is implemented in
MATLAB and the entire overtaking maneuver is simulated. The
results show that the designed control framework successfully
performs the overtaking on a straight two-lane highway in a
safe manner.

I. INTRODUCTION

Autonomous vehicles are anticipated to revolutionize the
transportation system as we know it today. In the near future
we will see self driving cars as a part of our everyday life.
Among its many advantages are increased safety, higher fuel
efficiency and faster transportation.

Although great advancements have already been made in
the field, many tricky traffic scenarios has to be handled in
order to guarantee safety. Features that handle some of these
situations have already been launched on commercial cars,
such as autonomous parking and emergency braking, but a lot
of other features are still in development. One such feature,
which handles a traffic situation that according to [1] accounts
for 4-10% of accidents in traffic, is autonomous overtaking.
Therefore, autonomous overtaking is of great importance to
study.

As the overtaking maneuver is a particularly dangerous traf-
fic situation, it is a top priority to ensure that an autonomous
car is always able to reach a safe state, even if something
unexpected would occur.

Many studies regarding trajectory planning of the overtaking
scenario have already been carried out, such as [2] and [3].
These papers show that model predictive control is a sufficient
tool. Equivalently, the safe state analysis has been researched
thoroughly in [4] and [5], where reachability has been proven
successful.

The main goal of this study is to design a complete control
system which can safely perform an overtaking maneuver on
a straight two-lane highway. The resulting controller will be
implemented and simulated.

The remainder of this work is organized as follows. Section
II covers the basic idea of our approach. Section III discloses
the mathematical model and theory for the entire study. In
Section IV, a brief description of the implementation of the
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Fig. 1: Flowchart describing the basic idea of the approach.

theory described in Section III is given. All simulation results
will be presented in Section V. These results will be further
discussed in Section VI. Lastly, conclusions based on the
discussion will be presented in Section VII.

II. BASIC IDEA, LIMITATIONS AND ASSUMPTIONS

The approach that will be used to create the control system
can be divided into three main parts; calculations of safe states
using reachability analysis, trajectory planning using model
predictive control and trajectory tracking.

In this study the overtaking maneuver will be carried out
on a straight two-lane highway with two traffic participants.
It will be assumed that the vehicle which is being overtaken
stays in its initial lane. In an overtaking scenario it is also
reasonable to assume that the speed of the car performing the
overtaking is significantly higher than the speed of the vehicle
being overtaken.

In order to ensure that no collision will occur, the first step
is to find the positions on the road where the overtaking car
can be but not the car being overtaken given their initial states.
These positions are free to use as the travel path.

The next step is to find an optimal and safe trajectory which
entirely lies within these positions. This is done with consid-
eration to traffic rules and appropriate overtaking behavior.
Such behavior includes accelerating before changing lane and
keeping sufficient distance to the other vehicle during the
whole maneuver.
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This means that the entire overtaking maneuver will be
planned, from the initial states of the two cars, before it is
executed. The last part is to design a simple tracking controller
that makes the car safely perform the planned overtaking based
on the real nonlinear model. The basic idea of the approach
is shown in Fig. 1.

III. MATHEMATICAL MODELING

A. Modeling of vehicles

There are two different vehicles included in this study; the
vehicle performing the overtaking maneuver, which will be
referred to as the ego vehicle, and the vehicle that is being
overtaken, which will be referred to as the other vehicle.
In reality there is no physical distinction between these two
vehicles and therefore they will be modelled in the same way.
As the papers [2] and [6] have mentioned, an accurate way to
mathematically model a car is through the bicycle model. The
same notation as in Fig. 2 from [2] will be used in this paper.

Fig. 2: Bicycle model used to model the cars. The notation
will be used throughout this paper.

The dynamics of the car can be described as follows:

Ẋ = V cos θ (1)

Ẏ = V sin θ (2)

θ̇ =
V

L
tan δ (3)

In order to carry out the calculations in this study, this
system will be linearized around certain values on θ, V and δ.
These values will be denoted θ0, V0 and δ0. As the overtaking
in this case takes place at a straight highway with high speeds,
the angles involved will at all times be very small. This also
motivates why the linearization will still model the system
accurately. Therefore the following values and constraints will
be used:

θ0 = 0 and |θ| ≤ 10◦ (4)
δ0 = 0 and |δ| ≤ 10◦ (5)

The speed of the cars will at all times be close to their
initial speed and therefore V0 is chosen as their initial speed.
The numerical value will be chosen later in this section. In
order to ensure that the linearization is a good approximation,
the constraints on V0 is given by:

0.9V0 ≤ V ≤ 1.1V0 (6)

The linearized system can be described by the following
equations:

Ẋ = V (7)

Ẏ = V0θ (8)

θ̇ =
V0

L
δ (9)

From these equations the state vector x and the control input
u for the cars are constructed.

x = [X,Y, θ]T (10)

u = [V, δ]T (11)

The linearized system can easily be discretized and can then
be written as follows:

x(kh+ h) = Ax(kh) +Bu(kh) (12)

where h is the time step, k is a positive integer parameter and
the matrices A and B are given below:

A =

1 0 0
0 1 V0h
0 0 1

 B =

h 0
0 0

0 V0h
L

 (13)

So far no distinction between the autonomous ego car and
the other car has been done. However, the numerical values
on V0 and the constraints for the cars, both on the states and
on the inputs, are still to be defined. These will be treated
separately.

1) Constraints for the ego vehicle: First, it must be guaran-
teed that the car stays on the road. This gives a constraint on
the Y -coordinate of the car. The middle of the highway will
be defined as Y = 0. No such constraint can be enforced on
the X-coordinate, however the car will begin in X = 0 and
move forward, hence the state constraints of the ego vehicle
can be written as:

Xego ≥ 0 m (14)
|Yego| ≤ 5 m (15)
|θego| ≤ 10◦ (16)

The value on V ego
0 and the input constraints also need to be

defined. The ego vehicle drives initially at a speed of 90 km/h,
therefore the following values are obtained:

V ego0 = 90 km/h (17)
81 km/h ≤ Vego ≤ 99 km/h (18)
|δego| ≤ 10◦ (19)

2) Constraints for the other vehicle: The state constraints
for the other vehicle is similar to the ego vehicle’s, with the
difference being that the other vehicle will be assumed to stay
in the right lane and start 40 m ahead of the ego vehicle.

Xother ≥ 40 m (20)
− 5 m ≤ Yother ≤ 0 m (21)
|θother| ≤ 10◦ (22)
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The linearization speed, V other0 is chosen as the initial speed
of the other vehicle. The following values are obtained:

V other0 = 70 km/h (23)
63 km/h ≤ Vother ≤ 77 km/h (24)
|δother| ≤ 10◦ (25)

The aforementioned models of the cars is used to plan the
safe trajectory. When this trajectory is tracked in a simulation,
a more physically correct model is needed. As it is impossible
to change the velocity and the front tire angle instantly,
acceleration and front tire angular velocity is used as control
inputs to the ego car. The state and input become:

x = [X,Y, θ, V, δ]T (26)

u = [a, δ̇]T (27)

where a is the acceleration and δ̇ is the front tire angular
velocity. Note that in this case a linearization of the model
must not be used, as this is supposed to simulate reality.

The constraints on a are set with passenger convenience in
mind, thus being bounded by:

|a| ≤ 4 m/s2 (28)

No such constraint is imposed on δ̇ as δ is already bounded
to be very small.

The modelling and constraints of the cars are now finished.
The next step is to create a framework from where calculations
of the safe states of the cars can be conducted.

B. Reachable Safe States

In order to find a safe overtaking maneuver, it must be
guaranteed that the ego vehicle can not at any time in the future
be in the same position as the other vehicle. First of all, the
reader will be reminded of the definitions of Minkowsky sum,
difference and intersection of sets before the definition of a
reachable set and the corresponding safe set will be presented.

Definition 1: The Minkowsky sum of the sets A and B is
defined by: A+B = {x+ y|x ∈ A, y ∈ B}.

Definition 2: The set difference between the sets A and B
is defined by: A \B = {x|x ∈ A, x 6∈ B}

Definition 3: The intersection of the sets A and B is
defined by: A ∩B = {x|x ∈ A ∧ x ∈ B}

Definition 4: Ri(kh) is the polyhedron containing all
reachable state for vehicle i at time step k.

Definition 5: The safe set for the ego vehicle at time step k
is defined by:

Sego(kh) = Rego(kh) \Rother(kh)

i.e. the part of the reachable set for the ego vehicle that does
not intersect with the reachable set of the other vehicle.

In order to take into account the dimensions of the cars,
which in this study are chosen as 4.7m×1.8m, the reachable
set of states at time step k = 0 is defined as the set of
positions covered by the car when it is centered at the initial
position. For the ego car, with the initial position chosen as
(Xego

0 , Y ego0 ) = (2.35,−2.5) this gives:

R(0)ego ={X,Y, θ| 0 m ≤ X ≤ 4.7 m,
− 3.4 m ≤ Y ≤ −1.6 m, θ = 0◦}

The initial set of the other vehicle is then given by the
following set.

R(0)other ={X,Y, θ| 40 m ≤ X ≤ 44.7 m,
− 3.4 m ≤ Y ≤ −1.6 m, θ = 0◦}

The set of possible states and the set of possible inputs are
limited by the constraints of the vehicles, which are given in
the previous subsection. These sets are denoted as L and U.

Lego = {X,Y, θ|X ≥ 0, |Y | ≤ 5, |θ| ≤ 10◦} (29)
Uego = {V, δ| 81 km/h ≤ V ≤ 99 km/h, |δ| ≤ 10◦} (30)

Lother = {X,Y, θ|X ≥ 0,−5 ≤ Y ≤ 0, θ ≤ 10◦} (31)
Uother = {V, δ| 63 km/h ≤ V ≤ 77 km/h, |δ| ≤ 10◦} (32)

The reachable set of states of vehicle i at time step k can
be calculated through the following algorithm:

R(kh+ h)i = (AiR(kh)i +BiUi) ∩ Li (33)

where A and B are the matrices defined in Eq. 13. The
reachable safe states of the ego vehicle at each time step
can then be calculated from Definition 5, i.e. from the set
difference of R(kh)ego and R(kh)other. As it is now known
where the ego car safely can be positioned at each time step,
it is time to move on to the trajectory planning part.

C. Trajectory planning

As the approach is to plan the entire trajectory from the
initial state of the cars, this section consists of essentially two
different tasks. The first is the task of computing the next
control input signal to the ego vehicle, given the current state
and the safe states from the previous subsection. The second
part is to calculate the new state given the aforementioned
input, virtually move the car accordingly and then recalculate
the safe states based on the new position. This procedure will
be repeated until the overtaking trajectory is fully planned.

To plan the trajectory, model predictive control, MPC,
framework and the notation from [7] is used. The strength of
MPC is that one can optimize the current input, while taking
future states into account. In order to do this, a cost function
is used to assign costs to deviations of certain reference values
of the current and future state and input values. The number of
future states taken into account is called the prediction horizon.
As the cost function assigns penalties to a state, the cost
function should be minimized at all times, under the constraint
that the car is always positioned in the safe states calculated
in the previous subsection. The optimization will generate an
input sequence over the prediction horizon, where only the
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calculated input for the current state will be used as input to
the system. The procedure will be demonstrated below.

The first step in the MPC framework is to define a predicted
input and output sequence at time step k. These are defined
as follows:

u(k) = [u(k|k), u(k + 1|k), ..., u(k +N − 1|k)]T (34)

x(k) = [x(k + 1|k), ..., x(k +N |k)]T (35)

where x(k + i|k) and u(k + i|k) denotes the state and input
vectors at time k + i predicted at time k. N is the prediction
horizon, which in this paper is chosen as N = 5.

The next step is to design a cost function, J(x(k),u(k)).
In this study the cost function will be on the form below.

J =

N∑
i=1

(xi − xrefi )TQ(xi − xrefi )+ (36)

(ui − urefi )TR(ui − urefi ) (37)

where xi = x(k+ i|k) and ui = u(k+ i− 1|k) are defined to
simplify the notation and Q and R are square matrices called
weights. The reference values, xrefi and urefi represents the
desired values of the state and input. Before the overtaking
maneuver starts, the ego vehicle must stay in the middle of
the right lane, i.e. yref = −2.5 m. When the ego vehicle gets
sufficiently close to the other vehicle the ego vehicle should
move to the middle of the left lane, i.e. yref = 2.5 m. The
change in yref is triggered by a condition on the distance
between the ego car and the closest possible position of the
other car. In this study, if the distance of X-coordinate between
the ego vehicle and the closest possible position of the other
vehicle is less than 10 m then yref = 2.5 m, otherwise yref =
−2.5 m.

To make a more time efficient overtaking, the ego car is
desired to speed up before starting the overtaking maneuver.
Therefore the same condition as before will be used, with the
distinction that the change in speed is triggered at the distance
of 20 m. If the distance is closer than 20 m the ego vehicle
should obtain 1.1V0, which is 99 km/h, and otherwise keep
the speed at 90 km/h. The ego car should also have both the
angle of the car, θ, and its steering angle, δ, close to zero.
Therefore θref = δref = 0 is used.

In the cost function there are two weight matrices, Q and
R. These are used to assign a certain cost to each variable.
As no penalty is enforced on the X-coordinate the weight
corresponding to the X-penalty is chosen to 0. The weight
matrices are chosen based on simulations as:

Q =

0 0 0
0 1 0
0 0 5

 R =

[
1 0
0 1

]
(38)

The next step is to assign constraints to the optimization
process. As stated in the earlier sections, the following con-
straints must hold at all times.

x(k + i+ 1) = Ax(k + i) +Bu(k + i) (39)
x(k + i|k) ∈ Sego(k + i) (40)
u(k + i|k) ∈ Uego (41)

where i = 0, 1, 2, ..., N . To make the model more physically
correct, another constraint on the velocity to bound the accel-
eration of the car has to be added. This constrain is chosen
as: ∣∣∣∣u(k + i|k)− u(k + i− 1|k)

h

∣∣∣∣ ≤ 4 m/s2 (42)

From Eq. 39 it is clear that the cost function is a function of
the current state x(k), which is known, and the input sequence
u(k). The input sequence that minimizes the cost function is
denoted u∗(k). From this optimal input sequence only the first
element, u∗(k|k), will be used as the input signal to the ego
car. In this study the input signals from the MPC will therefore
be denoted:

u∗(k|k) = [V ∗(k|k), δ∗(k|k)]T (43)

When the optimal input signal at the current state is known,
the ego vehicle has to be virtually moved accordingly and the
safe states in the new prediction horizon has to be recalculated,
based on the new position. This means resetting R(0)ego to be
centered at the new position given by Eq. 12. This is performed
at each time step k.

This entire process goes on until the overtaking maneuver
is finished, i.e. until the ego vehicle has overtaken the other
vehicle and returned to the right lane. Every position used for
the ego vehicle, and its corresponding time stamp, will form
a discrete trajectory of the maneuver.

The trajectory planning is now finished and the result from
this section is a discrete trajectory of positions with a specified
time, that ensures safety.

D. Trajectory tracking

Now when the trajectory is planned, the next step is to
design a simple controller that will enable the real car to
track the trajectory. It is of great importance that the ego car
follows the trajectory close for safety to be guaranteed. The
approach to solve this problem is to design two controllers,
one controlling the acceleration and one controlling the front
tire angular velocity.

Due to the complexity of multiple controllers working
simultaneously the controllers are designed as if the other
controller behaves ideally, i.e. the controller which controls the
acceleration will assume that the car has the right angle and the
controller which controls the steering angle will assume that
the car has the right velocity, although this might not always
be true.

In [4] a P-controller was shown to successfully track a
predefined trajectory, therefore it is motivated to use a similar
controller in this study. However in this case, following the
trajectory sufficiently close is necessary but not enough. Since
each point on the calculated trajectory is associated with a
certain time the controllers must ensure that the car reaches
each point at the right time. In order to achieve this, a P-
controller which applies a control input based on the difference
between the current state of the car and the desired sate of the
car is used.

As a first attempt the input acceleration is proportional to
the difference between the desired speed and the current speed.
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The desired speed is defined as the constant speed which is
needed in order for the car to reach the trajectory point at the
right time.

a = Ka∆v = Ka(vdes − vc) (44)

where the desired speed is denoted vdes and vc is the current
speed of the ego vehicle. Since the desired speed is the
constant speed needed to reach the next trajectory point at
the correct time, it can be written as:

vdes =

√
(xdes − xc)2 + (ydes − yc)2

tdes − tc
(45)

where (xdes, ydes) is the position of the next trajectory point,
tdes is its corresponding time, (xc, yc) is the current position
of the ego vehicle and tc is the current time. The input
acceleration can now be written as:

a = Ka

(√(xdes − xc)2 + (ydes − yc)2

tdes − tc
− vc

)
(46)

In order to choose the proportional constant Ka, simple
mechanics will be used. Assuming the car traveling in a
straight line with constant acceleration a and initial speed v,
the distance d traveled during the time ∆t is:

d = v∆t+ a∆t2 (47)

Solving for a gives:

a =
2

∆t
(
d

∆t
− v) (48)

By comparing Eq. 46 with Eq. 48 it can be realized that
in order to reach the trajectory point at the right time the
following choice is appropriate:

Ka =
2

tdes − tc
(49)

As Ka is not a constant, this controller is not strictly a P-
controller but a modified version of it.

Now the attention is turned to the front tire angular velocity.
This controller will also be a proportional controller. In this
case the input signal will be proportional to the difference
between the desired and the current front tire angle.

δ̇ = Kδ∆δ = Kδ(δdes − δc) (50)

The desired front tire angle is the constant angle that will
place the car in the desired direction during a time ∆t. The
desired direction of the car is the angle for which the car
drives straight towards the next discrete trajectory point. From
the bicycle model Eq. 3, the following relation is obtained:

δdes = tan−1
(Lego
Vego

θ̇des

)
(51)

In order to calculate θ̇, the following approximation is made:

θ̇des =
θdes − θego
tdes − tc

=
tan−1( ∆y

∆x )− θego
tdes − tc

(52)

where ∆x = xdes − xc and ∆y = ydes − yc. This means that
θdes is chosen as the desired angle of the vehicle. The input
angular velocity can now be written as:

δ̇ = Kδ(tan−1
(Lego
Vego

tan−1( ∆y
∆x )− θego

tdes − tc

)
− δc) (53)

The next step is to choose the constant Kδ . This value is
chosen through simulations as 50.

In order to track the discrete trajectory, the tracking con-
troller will run multiple times before changing the reference
point. In this study, the tracking controller runs 10 times
between every reference update. As the discrete trajectory
points are separated by the time step h, defined in Eq. 12,
the controller will run periodically with period h/10.

IV. IMPLEMENTATION

To perform all of the calculations, Matlab and additional
toolboxes are used. In this section a brief description of the
procedure is presented.

The time step h is the time step used in the reachability
calculation and the planning of the trajectory. In the imple-
mentation of the control system the numerical value is set to
h = 0.08 as it gives a reasonable calculation time.

A. Reachable safe states

As described in the previous section, the mathematics be-
hind the calculations for the reachable safe states relies heavily
on set operations. To easily define sets and perform simple set
operations, the toolbox described in [8], called MPT3, is used.
This toolbox represents sets as polyhedra. These polyhedra are
easily used with the predefined set operations in the toolbox.
All set operations used in the study are all defined in the
previous section.

The first part of the implementation was to calculate the
safe reachable states for the ego vehicle at a certain time step.
To demonstrate this procedure a plot of the safe states in the
prediction horizon at a certain time is shown in Fig. 3.

Fig. 3: Reachable safe positions for the ego car in one
prediction horizon are shown in light grey. The corresponding
reachable set of positions for the other vehicle are shown in
dark grey.
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Fig. 4: The ego vehicle in light grey overtaking the other
vehicle in dark grey visualized by the simulation environment.

B. MPC

To perform the calculations needed in the MPC framework it
is convenient to use the toolbox described in [9]. This toolbox,
called Yalmip, provides a simple way to define the prediction
horizon, the cost function, the constraints and to calculate the
optimized solution. As the MPT3 and Yalmip toolboxes are
very compatible with each other it is easy to use the safe sets,
defined as polyhedra, as constraints in the MPC calculations.

C. Simulation environment

In order to simulate the behaviour of the ego vehicle a
simulation environment was created. The simulation environ-
ment is supposed to simulate a real car and its surroundings.
From the simulation program the actual trajectory and input
of the car can be extracted. To make the simulation program
more realistic, the acceleration and front tire angular velocity
are used as inputs, i.e. the more complex model from the
mathematical modelling of the vehicles is used. Figure 4
shows how the simulation environment displays an overtaking
scenario.

V. SIMULATION RESULTS

The main result from the first two parts of the study, i.e. the
reachable safe states and the trajectory planning, is the discrete
positions describing the safe trajectory, which are shown in
Fig. 5, together with their corresponding time stamp. After
implementing the tracking controller, the overtaking maneuver
was simulated. The obtained trajectory is shown in Fig. 6.
From Fig. 5 and Fig. 6 overshoot is seen around e.g. X = 100
m. Fig. 7 shows this behaviour more closely.

The behaviour of the car is satisfactory if the car reaches
its desired position at the right time. One way to study this is
to look at the distance between the desired position and the
actual position of the car at each time stamp. This distance is
shown in Fig. 8.

From the trajectory planning the calculated input data from
the MPC is given, i.e. the speed V ∗ and the front tire angle δ∗

of the ego vehicle. Although these are not used as inputs to the

ego car in the simulation, these values can give us information
about the tracking behaviour. Both the calculated speed and
the speed obtained from the simulation are shown in Fig. 9.
The corresponding information about the front tire angle are
shown in Fig. 10.

In the simulation the input signal to the car is the acceler-
ation and front tire angular velocity. These input signals are
shown in Fig. 11.

VI. DISCUSSION

The main focus of this study was to create a complete
control system that can guarantee safety of an overtaking
maneuver. However, all the limitations and assumptions made
simplifies the problem. In this section, a discussion of the
models used and how these might have affected the result are
presented. Also, the results from the previous section and how
these relate to the model is discussed. The last part of this
section covers the possible applications of the method used in
this study and how it might be implemented in the future.

A. Model

In this study, the bicycle model from Fig. 2 is used which
results in Eq. 1, Eq. 2 and Eq. 3. These equations are then
linearized to give Eq. 7, Eq. 8 and Eq. 9. Since they are
linearized around (V0, θ0, δ0) the equations are approximations
for any values (V, θ, δ) different from the ones linearized
around. The approximation error increases when the difference
between these tuples increases, i.e. the model is only a good
approximation when the ego vehicles dynamics are close
enough to the dynamics linearized around.

From this, one can draw a couple of conclusions. The first
is that it can be expected that the linearized model accurately
describes the ego vehicle in the beginning and in the end of the
overtaking as the values on (V, θ, δ) are (V0, θ0, δ0) in these
regions. However when the ego vehicle actually changes lane
and speeds up, a less accurate result is expected. For example
it can be seen that while the ego car has a constant speed of
V and a constant angle of θ > 0, Eq. 7 gives that the car
should move forward along the X-axis with speed V , while
Eq. 8 shows that the car is moving along the Y-axis with speed
V0θ. This gives a total speed of

√
V 2 + (V0θ)2 instead of the

actual speed V .
The second conclusion is that in the studied case, the

vehicles are assumed to travel at high speeds which means that
the angles θ and δ of the cars are always close to 0. Therefore
the linearized model should be a good approximation. In lower
speed scenarios, for example urban driving where the angles θ
and δ might significantly differ from 0, the linearized model is
probably not satisfied. Essentially this means that our methods
should not be naively applied to urban driving scenarios.

B. Results

The results are essentially of two different types; results
connected to the trajectory and results connected to the input
signals.
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1) Trajectory analysis: From the MPC, the discrete trajec-
tory displayed in figure 5 is obtained. From the reachability
analysis it is guaranteed that the generated trajectory is safe. In
addition to this, the length of the overtaking is approximately
350 m, which is reasonable at the high speeds used. This
might seem like a long overtaking, but bear in mind that the
ego vehicle overtakes all possible position of the other vehicle
independent of the actual speed of the other vehicle. It is also
seen that the car strives to stay in the middle of its reference
lane and that the angle of the car is within the valid interval.
This is the behaviour that was demanded from the MPC.

As has been mentioned, each position displayed by a point
also corresponds to a certain time stamp. This means that the
points on the trajectory should be closer together when the ego
car has the lower speed and further apart when the ego car has
the higher speed. This behaviour is hard to see in figure 5, but
will be verified through the tracking, where it is seen that the
car speeds up and still stays close to the reference trajectory
points. This means that the planned trajectory possesses the
appropriate behavior and the result is therefore satisfactory.

The planning part is now finished and left is the tracking
of the planned trajectory. The actual trajectory of the car,
shown in figure 6, is position-wise very similar to the planned
trajectory. Some overshoot is seen at the end of the lane
changes, which is expected since a simple P-controller is used.
From figure 7 it can be seen that the overshoot is less than
0.2 m, which is a very small distance in this context.

Although the positions of the car seems to be good enough,
no conclusions can be drawn from figures 5, 6 and 7 regarding
whether the car actually follows the discrete trajectory as the
time aspect is not yet considered. In order to analyze this,
figure 8 is useful. One can see that the distance between the
actual position of the car and the reference point is always less
than 0.15 m. This verifies that the car follows the trajectory,
including the time aspect. This also gives an upper bound on
the overshoot mentioned earlier. The result from the tracking

part verifies that the P-controllers were sufficient, at least in
simulations. In reality however, there are a lot of disturbances
which probably would require a more advanced controller.

Another interesting thing to mention here is that the worst
behaviour, i.e. the largest distance, is seen when the car turns.
This will be further discussed in the input analysis.

2) Input analysis: In addition to the discrete trajectory,
the calculated optimal input (V ∗, δ∗) is obtained from the
MPC. As the input to the car in the simulation are (a, δ̇),
the input (V ∗, δ∗) could have been treated as references to
track. However, this would not be sufficient as safety needs to
be ensured, i.e. that the car is at the right position at the right
time, not that the car has a certain speed and front tire angle.
The reason that the car would not be at the right position at
the right time if (V ∗, δ∗) would have been tracked is due to
the fact that these are calculated with the linearized model and
this is not the way the real car would behave.

Although the speed V ∗ and front tire angle δ∗ of the
modelled car is not used as a reference trajectory, it is very
interesting to compare the values generated from the MPC and
the actual values from the simulated car. The speeds are shown
in figure 9 and the front tire angles are shown in figure 10.

As can be seen, the speed of the ego vehicle follows V ∗

closely except of two shorter time intervals. In these intervals,
the speed is significantly higher than V ∗. From Fig. 10 it is
seen that this occurs when the car turns. This means that the
car speeds up, in order to reach each trajectory point in the
right time, when it turns. As already mentioned in the Model
discussion, the linearized model of the car will generate a
trajectory based on the velocity

√
V ∗2 + (V0θ)2, while the

car still has velocity V ∗ in the model. With the values used
in this study, this means that the trajectory is generated with
a velocity of approximately 27.8 m/s which agrees with the
actual speed of the car shown in Fig. 9. Therefore the actual
speed of the ego vehicle is expected.

The front tire angle input is very similar to δ∗ as seen in

Fig. 5: Discrete trajectory of positions on the road. Each point is correlated with a certain time stamp. Note the gradation on
the axes.

Fig. 6: The actual trajectory of the ego vehicle when performing the maneuver. Note the gradation on the axes.
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Fig. 7: The discrete trajectory together with the actual trajec-
tory capturing the overshoot. Note the gradation on the axes.

Fig. 8: The distance between the desired position and the
actual position of the ego vehicle at each time stamp.

Fig. 10. The difference between δ∗ and the actual δ is that δ
has some overshoot, oscillations and is not as smooth as δ∗.
This is expected since a simple P-controller is used for the
front tire angular velocity input.

The real input to the car is the acceleration and the front
tire angular velocity, shown in Fig. 11. The acceleration input
signal is as expected, based on the speed discussion and the
constraint of ±4 m/s2. The two wide peaks which reaches the
constraint acceleration corresponds to when the car obtains a
new speed reference. The four lower peaks corresponds to the
speed change needed when the car turns as discussed above.

The interesting part from the front tire angular velocity input
is its drastic and oscillatory changes. This is a consequence
of how the P-controller is designed and how the reference is
updated. However, notice that this is not a strange behaviour
since this is the angular velocity of the steering wheel and
that the updates are discrete in time with a very small time
step. The time step is so small that a human passenger would
probably not be able feel the oscillation. A human would rather
feel the steering wheel angle which is much smoother.

Overall we can see that all inputs has the expected behaviour
which is reflected by the great tracking result. This verifies that
the P-controller was sufficient for the tracking problem.

C. Methods

In this subsection the methods used in this study will be
discussed.

1) Reachable safe states: The aim of the reachability
analysis was to generate sets representing the safe states within
a prediction horizon. The safe sets are expected to successively
expand and never overlap the reachable set of the other vehicle.
Fig. 3 shows the sets for a certain prediction horizon and shows
that it holds the desired behavior.

Fig. 9: Input speed calculated in the MPC, V ∗, and the actual
speed of the ego vehicle in simulation, V .

Fig. 10: Front tire angle input calculated in the MPC, δ∗, and
the actual front tire angle of the ego vehicle in simulation, δ.

The safe reachable states for the entire overtake are calcu-
lated from the initial state of the two cars. Although this means
that the overtaking maneuver might be unnecessary long, it
is crucial to know that the entire overtaking can safely be
performed before even starting the maneuver. This can only
be guaranteed through calculations based on the initial state
of the cars. To solve the problem of an unnecessarily long
overtake, a more advanced method could be used. One such
method is to gather data about the other vehicle during the
overtake and recalculate the future safe sets. The MPC would
then calculate a trajectory based on the current state of the
system rather than its initial state.

2) MPC: The MPC framework uses predicted states in
order to calculate the optimal input. This is very useful in
traffic situation as the desired behavior of a traffic participant
highly depends on possible future states of a traffic system. In
this study this is utilized as the future safe sets are known and
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Fig. 11: The two input signals a and δ̇ to the ego vehicle in
the overtaking simulation.

the main focus is on creating a safe trajectory. From the safe
set constraints it is known that a generated trajectory is indeed
safe, but the shape of it is determined by the cost function.
One might add additional costs to the cost function presented
in this paper in order to get another desired behaviour such
as a faster, a more passenger friendly or a more eco-friendly
overtake.

D. Applications

As already mentioned, the overtake situation in this study
is conducted with constraints that in most cases are realistic,
but hard to guarantee. One such example is the assumption
that the other vehicle will always stay in its lane and not
speed up significantly. In today’s traffic this can of course
not be ensured and although it is still possible to calculate the
trajectory, safety can not be guaranteed.

Even though constraints like the aforementioned are hard to
ensure in today’s traffic, it might not at all be hard to ensure if
the other car is also autonomous. In a smart traffic system the
ego and other vehicle could exploit vehicle-to-vehicle, V2V,
communication to accomplish this. However there are still a
lot of challenges for such communication which is shown in
[10].

Another interesting point to mention is that overtaking might
not be the only or best fitted application for the methods
presented in this study. A lot of other traffic scenarios, such
as lane change, intersection and roundabout situations could
be handled in a similar way.

E. Future work

The methods used in this paper would benefit from the
development of V2V communication. A repetitive problem
is that the ego vehicle is not able the foresee other vehicles
behaviour which might be solved using V2V communication.
A contract based communication language between vehicles
which bounds the possible behaviour of each vehicle might
be a solution.

As mentioned in the Methods discussion, calculating the
safe sets based solely on the initial state is problematic. To
gather data and recalculate the safe sets during the overtake
would generate an improved trajectory and strengthen the
overall performance of our complete control system.

Other obvious extensions of this study that would greatly
increase the applicability would be to study more complex
traffic scenarios with the same approach. Such scenarios
should include multiple other traffic participants, oncoming
traffic and non-straight roads. Also the limitations imposed by
the linearization done in order to plan the trajectory has been
discussed. A study treating the procedure for the non-linear
system is of great importance in order to make this applicable
to situations of greater velocity changes or sharper turns, which
is usually the case in urban driving.

VII. CONCLUSION

This study aimed to create a complete control system for
an overtaking maneuver on a straight two-lane highway that
can also guarantee safety. The procedure was divided into
three main parts; calculations of safe states using reachability
analysis, trajectory planning using the framework of model
predictive control and trajectory tracking. With the methods
used it can be guaranteed that a planned trajectory is safe.

The result from the trajectory planning reveals that the used
procedure works as intended. The planned discrete trajectory
shows a very reasonable overtaking path, which is also suc-
cessful in simulation.

The tracking used to follow this path is designed to ensure
that the car stays sufficiently close to the planned safe trajec-
tory at all times. From the error analysis it is seen that the
controller used is successful.

Overall the complete control system plans and performs a
safe overtaking maneuver in a satisfying way. However, the
overtaking situation in this study is simplified from reality
and from the discussion we can conclude that improvements
has to be made before a real implementation is possible.
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