
AUTONOMOUS MULTI-LANE DRIVING 1

Design And Implementation Of a Controller To
Advance In Multi-Lane Traffic Similar To Human

Behavior Using Control Improvisation
Filip Klaesson, Jin Ge, Richard M. Murray

California Institute of Technology

Abstract—An important traffic situation that needs to be
considered in the development of autonomous vehicles is multi-
lane driving. When developing a control system for multi-lane
driving, it is crucial to consider the human-vehicle interaction.
Another aspect is whether the overall efficiency actually improves
when the majority of cars change lane autonomously. One
approach to design a control system for autonomous multi-lane
driving considering the traffic efficiency and the human-vehicle
interaction is to design a improvisation controller to simulate the
human behaviour. The control system can be divided into two
problems. The first is to design a randomized lane-changing rule
which determines if a possible lane change should be carried
through. The second part is to move the car autonomous to
the desired pose. In this study, the second part is implemented
on an F1/10 unit to demonstrate autonomous lane changes. The
F1/10 unit is using SLAM in order to localize and build a map
of the environment based on lidar data. The path planning is
implemented with motion primitives and the trajectory is tracked
with a PD controller.

I. INTRODUCTION

Since autonomous vehicles are believed to improve the
traffic in the future with higher traffic flow, increasing safety
etc., it is of great importance to study control systems for
different traffic situations and how to implement them. Even
though great advancements has already been made with mul-
tiple autonomous features implemented on commercial car,
e.g. adaptive cruise control and autonomous parking, there
are still many complex traffic situations that has to be taken
care of in order to reach an entirely autonomous vehicle. A
particularly common traffic situation that is crucial to automate
is multi-lane driving. Research on how to advance in such
traffic has already been made and different approaches has
been developed, e.g. by Du, Wang and Chan in [1], which
focus on the actual lane changing maneuver itself. In [1], a
lane change is carried out by following a planned trajectory if
one cannot reach the desired speed in the current lane. Tesla
has already implemented autonomous lane changes where the
driver has to give a turning signal in order to evoke the lane
change according to [2]. In order to reach a fully autonomous
vehicle, the decision has to be taken by the vehicle itself.
However, with a naive decision making rule deciding if a
possible lane change should be carried through or not, another
concern regarding traffic efficiency arises. For instance, Evans
and Peters in [3], has predicted that traffic efficiency might
decrease when the majority of cars run on adaptive cruise
control. If naive lane changes are taken into account, a ping-

pong effect might occur and the traffic efficiency would get
even worse. Another pivotal aspect which has to be considered
is the human-vehicle interaction. A naive decision making rule
would evoke a large number of lane changes which is most
likely not appreciated by human passengers and other traffic
participants. Therefore, a more human-like decision making
rule is expected to be higher valued by the community.

In this paper an approach based on improvisation control is
proposed. The improvisation control problem is more deeply
described in [4] and [5]. The considered control system can
be divided into mainly two problems: A randomized lane-
changing rule, and a control system that moves the vehicle to
the desired pose. The randomized lane-changing rule generates
a distribution from which the decision to change lane or to
stay in the current lane is based on. In order to move the
vehicle to the desired pose, multiple problems need to be
considered in order to implement the control system. To begin
with, hardware such as sensors and actuators, etc., have to
be configured and set up such that data about the vehicle
and the environment is gathered properly. The sensor data
is used to map the environment, which allows the vehicle
to localize itself withing the environment. This can be done
using Simultaneous Localization And Mapping, called SLAM.
When the vehicle can localize in a fix global frame, path
planning to the desired pose has to be implemented online and
the generated trajectory has to be tracked sufficiently close. In
this paper, the focus is on the second part of the control system
and the main goal is to implement it on an F1/10 unit using
Robot Operating System, ROS.

This paper is organized as follows: Section II includes a
preparation that consist of the basic idea of the approach,
followed by a brief introduction to ROS. Section III describes
the F1/10 units architecture and hardware used and its im-
plementation. In addition, a mathematical model of the F1/10
units kinematics will be presented. In Section IV, SLAM is
briefly described and implemented. This is followed by a
brief description of path planning with motion primitives in
Section V, after which the vehicle is able to localize and plan
a trajectory. In section VI, a low level control, LL control, to
map the high level control output to the vehicles dynamics is
designed. In Section VII, the HL control is designed to follow
the desired trajectory. Experimental results will be presented
and discussed in Section VIII and conclusions based on the
discussion will be presented in Section IX. Lastly, future work
and applications will be considered in Section X.



2 AUTONOMOUS MULTI-LANE DRIVING

II. PREPARATION

A. Basic idea

The approach that will be used in this study to create and
implement the control system on an F1/10 unit is divided into
4 parts: sensor and actuator data processing, navigation and
localization using SLAM with lidar data, path planning using
motion primitives and trajectory tracking.

Before every component in the control system is more
deeply examined, the basic idea of the setup is described.
Consider the feedback loop illustrating the setup in Fig. 1.
The reference signal r feed to the control system is the desired
pose and the output y is the current pose. The pose deviation is
used as input into the HL controller to calculate an appropriate
output uHL in terms of the F1/10 units kinematic variables,
speed v and front tire steering angle δ. The HL output uHL is
required to be converted into a Pulse Modulation Width signal,
PWM, to be used as input to the actuators. For this purpose,
a LL controller is introduced to handle the conversion from
speed v and front tire steering angle δ to PWM, which is the
output uLL from the LL controller.

High Level
Controller

Low Level
Controller

System

D

uLLr e uHL y

−

Fig. 1: Block-diagram describing the feedback loop.

B. Robot Operating System

ROS is an open source robotics middleware, which serves
the purpose of providing services in robotics development. It
abstracts away the communication between processes to allow
easy data sharing. A process in ROS is called a node, and
multiple nodes can be combined to create a graph of nodes,
which can communicate with each other. Nodes communicate
and trade messages/services in so called topics that is data
streams with specific message types. A node can write data to
the topic by initializing a publisher and publish messages of
the correct message type to the topic. Other nodes can then
access the data flowing in the topic by initializing a subscriber
and subscribe to the topic. In this study ROS Indigo is used
on the F1/10 unit. All code related to this research is provided
in [6] and described in the appendix.

III. F1/10 UNITS ARCHITECTURE

A. Architecture

F1/10 is a project developed by University of Pennsylvania,
which takes an Traxxas RC car and rebuilds it to a unit for
autonomous testing and racing. On the F1/10 unit, a Nvidia
Jetson TX1/TX2 is mounted running Ubuntu Xenial 16.04.01
to use for data processing and computations. The sensors
mounted on the unit are a Hokuyo URG-04LX-UG01 Lidar
and a SparkFun 9DoF Razor IMU M0, that will be used
for gathering data about the environment. The Hokuyo lidar

gathers data with a frequency of 10 Hz, a range of 5, 6m
and a angular range of 240◦ with a resolution of 0.352◦. The
range data from the Hokuyo lidar is send via the serial port to
the hokuyo node, which is then published in a topic called
scan. By subscribing to the scan topic, one can easily use the
lidar data for different purposes, e.g. construct a wall following
control or map and localize with SLAM. This will be covered
in the next section. The actuators used are a Titan 12-Turn
550 motor, which is connected to a Traxxas ESC XL5 to
control the throttle, and a Traxxas Servo 2080 to control the
steering. A Teensy 3.1 micro-controller is used to generate the
appropriate signal and feed it directly to the esc and servo. The
teenzy subscribes to a topic called drive pwm where integers
corresponding to the desired PWM signal are published. The
PWM signal is a 100Hz square wave in which the duty cycle
varies. According to the F1/10 units website [7], a duty cycle
of 10% corresponds to the signal the motor needs to go in full
reverse and the servo the adjust the steering angel of the front
wheels maximum to the left.

From a 20% duty cycle, maximum throttle from the motor
and a maximum steering angle to the right by the servo is
attained. Also according to the F1/10 units website [7], the
mapping between integers feed to the teenzy and correspond-
ing PWM is experimentally tested and given as described in
Table I. A Teenzy value of 6554 will generate a PWM signal
with 10% duty cycle and a Teenzy value of 13108 will generate
a PWM signal with 20%. For simplicity, the Teenzy values
are mapped to the interval [−100, 100]. In this research, these
will be called PWM values. Accordingly, a PWM value of
100 corresponds to full throttle and maximum steering angle
to the right and a PWM value of −100 corresponds to a full
reverse throttle and a maximum steering angle to the left.

PWM [%] Teenzy Value PWM Value
10% 6554 -100
20% 13108 100

TABLE I: Mapping between PWM, Teenzy values and PWM
values.

The F1/10 units architecture is well described by Fig. 2 from
[7]. It shows how all components including sensors, Jetson and
actuators, contribute. One additional component is added to the
unit that is not shown in Fig. 2. In order to run and edit code
wireless from a remote laptop, a Picostation m2 is mounted
and configured to the Jetson as a hotspot so that a remote
laptop can use ssh to run scripts on the Jetson wirelessly.

Fig. 2: F1/10 units high level architecture.



AUTONOMOUS MULTI-LANE DRIVING 3

B. Mathematical modeling of four-wheeled ground vehicle

Fig. 3 from [8] illustrates a well known and widely used
model of a four-wheeled ground vehicle. This model, called
the bicycle model, will be used in this study to represent the
F1/10 unit.

Fig. 3: The bicycle model.

L is the wheelbase, V is the speed, θ is the orientation of
the vehicle and δ is the front tire steering angle. For the F1/10
unit, the wheelbase L is 0.33m. From Fig. 3, the kinematic
equations of the vehicle can be derived:

Ẋ = V cos θ (1)

Ẏ = V sin θ (2)

θ̇ =
V

L
tan δ (3)

Since the lane change is performed on a straight highway
with high speed, the orientation θ of the car and the front tire
steering angel δ will be small at all times. This motivates that a
linearization of the kinematic equations still model the system
accurately. Linearization the kinematic equations around V =
V0, θ = 0 and δ = 0 gives the following linearized equations:

Ẋ = V (4)

Ẏ = V0θ (5)

θ̇ =
V0
L
δ (6)

When a constant PWM value is feed to the teenzy, the power
output in the motor and servo is constant, leading to a constant
speed and front tire steering angle. This means that the input to
the F1/10 unit is speed v and front tire angle δ. The state space
representations state vector x and input vector u is therefore
chosen as:

x = [X,Y, θ]T (7)

u = [V, δ]T (8)

The linearized system can now be written on a state space
for as:

ẋ = Ax +Bu (9)

where the matrices A and B are given by:

A =

0 0 0
0 0 V0
0 0 0

 B =

1 0
0 0

0 V0h
L

 (10)

IV. SIMULTANEOUS LOCALIZATION AND MAPPING

Simultaneous Localization And Mapping, SLAM, is a op-
timization method used to map the environment and localize
in it using lidar scan data. SLAM uses scan matching which
means that a small local map is built for every lidar scan.
These small local maps are then matched against the global
map in order to extend and update the global map and keep
track of how the vehicle is moving. Fig 4 from [7] shows the
basic idea of scan matching where the goal is to find the new
pose of the vehicle by comparing the new scan with the global
map.

Fig. 4: Scan matching using SLAM.

Scan matching is nothing else than an optimization problem.
The most likely position of the vehicle ξ∗ is the position that
minimizes the mismatch between two consecutive scans. The
mismatch is calculated by the following sum:

Σni=1[1 −M(Si(ξ))]
2 (11)

where Si(ξ) is the position of the scan point i in the world
frame, M is a function that measure the match of Si(ξ) with
respect to the previous scan and returns a value between 0
and 1, where 1 means perfect match and 0 no match at
all. There are many things to consider when designing the
SLAM algorithm, e.g. how to design the function M and
how to take obstacles visible in the previous scan but not in
the current scan into account. However, there are numerous
SLAM algorithms developed and several of them are already
implemented in ROS. In this research, a ROS package called
Hector SLAM is used. In practise, Hector SLAM subscribes
to the scan topic and produces the transform from the fixed
world frame to the base frame of the vehicle and returns the
estimated pose of the vehicle relative the world frame. A map
of the environment is then successively built up. Fig. 5 shows
the map being generated with Hector SLAM on the F1/10 unit.

The pose calculated by Hector SLAM is published in a topic
called slam out pose. This data, position and orientation,
will be used while tracking the desired trajectory.



4 AUTONOMOUS MULTI-LANE DRIVING

Fig. 5: Hector SLAM map built up successively.

V. PATH PLANNING USING MOTION PRIMITIVES

There are multiple methods to plan a path for vehicles.
Yet, a problem with online path planning is the amount of
time it takes to calculate the path, which is too long in many
applications. In traffic situations, it is important to generate
a path quickly but also to guarantee its safety. In [9], an
efficient and formal path planning approach is developed for
autonomous vehicles. In order to generate a safe trajectory,
the reachable sets of all traffic participants are calculated.
The reachable sets can be represented as e.g. zonotopes to
simplify the reachability analysis to set operations between
each traffic participants reachable set. There are different ways
to generate the trajectory within the safe set. MPC is a well
known method to generate an optimal trajectory in some sense
while considering hard and soft constraints. However, the
computational time might be to long in traffic applications. [9]
propose using pre-calculated motions primitives to efficiently
find a trajectory. The motion primitives are short trajectory
segments associated with a set of parameters such as speed and
front tire steering angle. The pre-calculated motion primitives
are stored in a library. In order to generate a trajectory, motion
primitives from the library are put together using a tree search.
The path generated may or may not be the optimal solution
depending on the tree search algorithm, e.g. width first search
and A* would generate different trajectories. In this study a
greedy search is used to generate the trajectory quickly. A
greedy search makes the optimal choice of path at each step
independently of the other steps. Fig. 6 show the trajectory
generated using motion primitives with a greedy search. This
trajectory will be used as desired trajectory for the rest of this
research.

VI. LL CONTROL DESIGN
PWM - KINEMATIC CORRELATION

Before the HL controller is designed, the correlation be-
tween the HL output uHL, which is speed V and front tire
steering angle δ, and the corresponding PWM value feed to
the actuators, needs to be determined. A LL controller is
introduced to take care of this conversion as seen in Fig. 1.

Fig. 6: Trajectory generated with motion primitives.

In order to determine this relation, two different experiments
will be carried out.

Recall that the interval for PWM values, [−100, 100], was
mapped from the Teenzy interval, [6554, 13108]. The Teenzy
interval from the F1/10 website is experimentally determined
using a different setup. Therefore, the PWM intervals bound by
the maximum/minimum speed and maximum/minimum front
tire steering angle is expected to differ from [−100, 100].

A. PWM - Speed Correlation

To determine the speed corresponding to a certain PWM
value, an experiment is carried out where a constant PWM
value is applied for the speed while the steering is manually
controlled. The position and timestamp of the F1/10 unit is
published by SLAM in the topic slam out pose. From the
discrete position and timestamp data, an approximation of the
speed is calculated as the difference in position divided by the
difference in timestamp for two consecutive data points. Since
the position data from the SLAM has an uncertainty, the speed
calculated is very noisy. To get a more realistic representation
of the actual speed, the calculated speeds are run through a
low pass filter. The extract the speed corresponding to the
constant PWM value applied, one can look at the acceleration
to determine an interval in which the speed can be considered
constant. The acceleration is calculated as the difference in
speed divided by the difference in timestamp between two
consecutive calculated speed points. Again, the calculated
acceleration is run through a low pass filter to remove noise. In
this study, the vehicle is consider to have reached a constant
speed when the acceleration is within ±10% of the maxi-
mum acceleration. Fig. 7, 8 and 9 shows three experimental
results of the speed, filtered speed and filtered acceleration
corresponding to the PWM values 17, 20 respectively 23.

The experiment is performed twice for every PWM value
between 15 and 25 with integer steps. Now, the average speed
and standard deviation is calculated in the intervals where
the car is considered to have a constant speed. The result is
presented in Table 10.



AUTONOMOUS MULTI-LANE DRIVING 5

Fig. 7: Speed, filtered speed and filtered acceleration for a
PWM value of 17.

Fig. 8: Speed, filtered speed and filtered acceleration for a
PWM value of 20.

Fig. 9: Speed, filtered speed and filtered acceleration for a
PWM value of 23.

PWM Value Avg. Speed [m/s] Std. Dev. [m/s]
15 0.506 0.033
15 0.491 0.037
16 0.597 0.051
16 0.615 0.036
17 0.815 0.033
17 0.817 0.035
18 0.984 0.048
18 0.987 0.041
19 1.193 0.047
19 1.190 0.048
20 1.438 0.045
20 1.425 0.054
21 1.582 0.033
21 1.568 0.038
22 1.870 0.041
22 1.864 0.039
23 1.986 0.042
23 2.042 0.053
24 2.092 0.089
24 2.076 0.106
25 2.293 0.041
25 2.286 0.071

TABLE II: Experimental data relating PWM values to average
speed and standard deviation.

Plotting the average speed with respect to the PWM value
results in Fig. 10. The standard deviation is represented by
the vertical lines in each data point. A linear fit to the data
gives equation 12 which is the relation between PWM value
and speed sought for in this section.

Speed [m/s] = 0.187 · PWM − 2.35 (12)

Fig. 10: Speed with respect to PWM value with standard
deviation.



6 AUTONOMOUS MULTI-LANE DRIVING

Now that the relation between PWM and speed is known,
the focus is turned to find a similar relation between PWM
and front tire steering angle.

B. PWM - Front Tire Steering Angle Correlation

In order to find the correlation between PWM value and
front tire steering angle δ another experiment is designed. A
constant PWM value results in a constant front tire steering
angle, which cause the F1/10 unit to drive in a circle. The
angular velocity of a rigid body in circular motion is given
by:

V = ωr = θ̇r (13)

where V is the speed, r is the radius of the circle and θ̇
is the angular velocity of the rigid body. Assuming no slip
between the tire and the ground, Eq. 3 and Eq. 13 gives the
front tire steering angle δ as a function of only the radius of
the circles:

δ = tan−1

(
L

r

)
(14)

If the F1/1 unit is driven slow the slip can be neglected, and
the front tire steering angle can be calculated from the radius
from the lidar position data. The experiment is performed for
different PWM values and the raw position data from SLAM
is presented in Fig 11.

Fig. 11: Raw position data from SLAM for different PWM
values.

Perfect circles are now fitted to the raw position data using
least square fit. The fitted circles are presented in Fig. 12.

The circle corresponding to a PWM value of 100 is almost
completely overlapped by the circle corresponding to a PWM
value of 90, the same thing can be seen for the circles
corresponding to a PWM value of −75 and −80. This means

Fig. 12: Circles fitted to position data from SLAM for different
PWM values.

that a PWM value above 90 and below −75 does not give a
larger front tire steering angle. Hence, the interval containing
the PWM values for all possible front tire steering angles is
[−75, 90]. Eq. 14 is now used to calculate the front tire steering
angle based on the radius of the fitted circles. The front tire
steering angle is then plotted with respect to the corresponding
PWM value and presented in Fig. 13.

Fig. 13: Front tire steering angle with respect to PWM values.

A linear fit to the data points in Fig. 13 results in Eq. 15
that describes the relation between the PWM value and the
corresponding front tire steering angle.

Steering angle [rad] = 0.0053 · PWM − 0.0462 (15)

Now that the correlation between the HL output uHL and
PWM value uLL is known, the HL controller can be designed
in order to follow the desired trajectory.



AUTONOMOUS MULTI-LANE DRIVING 7

VII. HL CONTROL DESIGN
LINE FOLLOWING CONTROL

From Section V, a desired discrete trajectory is obtained.
In this section, a HL controller that calculates the HL output,
uHL, needed in order to stay on the trajectory, is designed.
The approach that is going to be used is to try to minimize a
predicted future perpendicular distance to the desired trajec-
tory. Fig. 14 illustrates the geometry and notation that will be
used in this section.

Fig. 14: Illustration of the geometry used in the line follow-
ing controller where e is the predicted future perpendicular
distance the line following controller should minimize.

From Fig. 14 it can be seen that (x0, y0) is the position of
the previous discrete trajectory point and that (xg, yg) is the
next desired trajectory point, called the goal point. The current
position and heading of the vehicle is (x, y) respectively θ. The
predicted future position of the vehicle is denoted (xp, yp) and
is defined by:

(xp, yp) = (x+ p cos θ, y + p sin θ) (16)

where p is the prediction distance which is a design pa-
rameter. The predicted future perpendicular distance e can be
calculated as:

e = dp · n (17)

where n is the unit normal vector of the line connecting
(x0, y0) and (xg, yg), and dp is the vector from (x0, y0) to
(xp, yp). These vectors can be calculated as:

n = [sin θg,− cos θg]
T (18)

dp = [xp − x0, yp − y0]T (19)

θg = tan−1

(
yg − y0
xg − x0

)
(20)

In order to minimize the distance e, a PD controller is
used. The orientation θ of the vehicle should be adjusted such
that e is eliminated. Therefore, the desired controller is a PD
controller for the angular velocity θ̇ with the predicted future
perpendicular distance e as the the error:

θ̇ = kpe+ kde (21)

where kp and kd are design parameters.
However, the input is not angular velocity but front tire

steering angle. Using Eq. 3, the controller Eq. 21 can be
rewritten as:

δ = tan−1

(
L

V
(kpe+ kde)

)
(22)

Now, Eq. 22 is the desired controller that minimizes the
predicted future perpendicular distance e by adjusting the front
tire steering angle. The parameters kd, kp and p are chosen
based on experiments to:

kp = 7.1 (23)
kd = 2.7 (24)
p = 0.1 (25)

It is interesting to look at the pole positions with the chosen
parameters. Using Eq. 22 and assuming constant speed, the
state space equation, Eq. 26 can be written as:

ẋ = Cx +D (26)

where the matrices C and D are given by:

C =


0 0 0
0 0 V0

Ckpθg
1+Ckdp

−Ckp
1+Ckdp

−Ckpp−kdV
1+Ckdp

 (27)

D =

 V
0

−Ckpθgx0+Ckpθgp+Ckpy0+kdθgV
1+Ckdp

 (28)

The poles of the linearized state space equation are the
eigenvalues of matrix C. The poles are plotted in Fig. 15.

Fig. 15: Pole positions of the linearized state space equations.

The numerical values of the pole positions are presented in
Table III.

p1 0+0i
p2 -0.96+1.89i
p3 -0.96-1.89i

TABLE III: Numerical values of the pole positions of the
linearized state space equations.



8 AUTONOMOUS MULTI-LANE DRIVING

Apart from the pole in the origin, which doesn’t cause in-
stability, the real part of the poles are in the left half plane, the
system is stable with the chosen controller and parameters. The
pole position analysis is performed considering the linearized
system using continuous time analysis. Since the sensors and
controller work in discrete time, it is more representative
to calculate the poles using discrete analysis. However, the
continuous analysis can be used as a tool to understand how
the different parameters affect the systems behaviour.

Now that the HL controller is fully designed and the HL
output uHL, will be converted to the corresponding PWM
values and feed to the actuators by the LL controller. In the
experiments, a constant speed will be used. However, a similar
controller could be designed if that’s not the case. In the
next section, the experimental result when tracking the desired
trajectory is presented.

VIII. EXPERIMENTAL RESULTS

Now that all components are designed, configured and
implemented on the F1/10 unit it is time to perform experi-
ments to track the trajectory calculated in Section V using the
controllers designed in Section VI and VII. The experiment is
performed with a constant speed of 0.8 m/s. The position data
generated by SLAM is used to analyze the trajectory traveled
by the F1/10 unit. The trajectory is plotted together with the
desired trajectory in Fig. 16.

Fig. 16: F1/10 units trajectory together in black with the
desired trajectory generated with motion primitives in red.

As can be seen in Fig. 16, the F1/10 unit is following
the desired trajectory. There are small oscillations along the
whole trajectory and an even larger deviation from the desired
trajectory in the turns of approximately 3cm. It is important
to realize that the accuracy of the position calculated by
SLAM varies depending on the environment and the speed for
instance. Some oscillations would most likely disappear with
more tuning of the PD controller or by introducing an integral
part to the controller. However, since the system is nonlinear
there might not be a choice of PD parameters such that the
deviations are decreased both when driving on a straight line
and in the sharpest turns. For this purpose, the study would
benefit from a nonlinear or adaptive control design and the
trajectory could most likely be tracked with small deviations.

IX. SUMMARY AND CONCLUSION

The overall goal of this study was to design and implement
a control system that takes the F1/10 unit from the initial
point to a desired goal point, autonomously. The first step was
to implement all hardware components. To gather data about
the environment, sensors where mounted and configured. A
Hokuyo lidar was used to gather distance data of the obstacles.
The lidar data was analyzed by Hector SLAM that maps the
environment and keeps track of the pose of the F1/10 unit
simultaneously. Path planning was performed using motion
primitives to quickly generate a trajectory from the initial point
to the goal point. In order to track the calulated trajectory, a HL
controller was designed as a line following controller. The idea
behind the line following control is to minimize a predicted
future perpendicular distance to the desired trajectory. A LL
controller was designed in order to convert the HL output
to a PWM signal that can be interpreted by the actuators.
The LL controller, or the relation between the F1/10 units
kinematics, was determined by performing two experiments.
To map the PWM value to speed, the first experiment was
performed by applying a constant PWM value and calculate
the speed from the position data retrieved by SLAM. The
second experiment was performed in order to map the PWM
value to front tire steering angle. By applying a constant PWM
value, the F1/10 unit drove in a circle. From the assumption
that there is no slippage between the tire and the road, the
front ire steering angle is a function of the radius of the
circle. By performing the experiment in low speed, the desired
relation between PWM value and front tire steering angle
was calculated solely the radius of the circle. At this point,
both all the hardware component and the two controllers were
fully design and implemented and the final experiment was
ready to be performed, which was to autonomously follow
the desired trajectory generated by the path planning. The
F1/10 unit was able to follow the desired trajectory despite
minor deviations and oscillations, especially in the turns. From
the analysis of the pole positions the system is guaranteed
stable. However, the analysis is based on continuous system
and controllers, but since the sensors work in discrete time
the controller output is calculated in discrete time. A discrete
analysis of the pole positions would be more representative.
The developed and implemented control system can be used
in multiple experiments to simulate a traffic situation, not only
straight lane changes.

X. FUTURE WORK

To start off the discussion concerning future work, lets
recall to motivation of this study which was improving traffic
flow and the human-vehicle interaction in multi-lane traffic
using control improvisation. Since this study has dealt with
the second part of the improvisation controller, the next step
is to design the randomized lane-changing rule and integrate it
in the current control system. In order to experimentally verify
if the improvisation controller improves the traffic flow, it
would be beneficial to run the experiments on a ring road with
multiple F1/10 units or simulated traffic participants. There
are also possible improvements to the currently implemented



AUTONOMOUS MULTI-LANE DRIVING 9

control system. As discussed in Section VII, implementation
of a nonlinear or adaptive control would be beneficial. This
would enable the usage of the F1/10 unit to simulate more
general traffic situations where the linearized model used in
this study is not sufficient. Also, a speed controller to be able
to track a desired speed instead of performing the experiments
with a constant speed would be valuable.

ACKNOWLEDGMENT

The author would like to express great gratitude to the
project supervisor, Richard M. Murray and co-mentor Jin Ge.
Their support and guidance throughout the whole project has
been highly appreciated. Also, thanks to California Institute
of Technology, KTH The Royal Institute of Technology and
NSF for making this project possible.

APPENDIX

The scripts used in implementation of this research is
provided in [6]. In this section, the scripts are briefly described.

Run

To start the nodes that gathers and analyzes data, run
the python script Run. It starts the nodes hokuyo node,
imu node, serial node and talker and launches the launch
file f110. In addition to running Run, a node that feed
trajectory points to the controller is needed.

Talker

Talker is the node that communicates with the Teenzy. It
subscribes to the topic drive parameters where the PWM
values in the interval [-100,100] are published. Talker then
convert the PWM value using the function PWMconverter,
into the corresponding Teenzy value and publish it in the topic
drive pwm, which the Teenzy subscribes to. Talker also sub-
scribes to the topics record data, imu, scan, current speed
and slam out pose to gather experimental data which is then
written in a text file positions.txt for future analysis. The data
is written into positions.txt every time new position data is
available.

Serial node

Rosserial is a ROS package that contain tools to easily set
up a connection with a device through a serial port. It handles
the setup and all communication between the connected device
and roscore. Serial node is a node that uses rosserial to
setup the connection and data transfer with the lidar. This is
a standard setup and is deeply described in [7].

Hokuyo node

The hokuyo node is the node that receives the lidar
data from the serial port. The lidar data is then con-
verted and published in the topic scan with message type
sensor msgs/LaserScan. The message contains all the dis-
tance data and information one needs to map the environment.
The ROS package Hector SLAM include this node and all
the tools needed.

Imu node

Even though the IMU is not used in this research, the
IMU is fully configured and implemented for future work.
The code used to flash the IMU is provided as a zip file in
[6]. Additionally, the imu node is provided as the node that
recieves the imu data from the serial port and publish it in the
imu topic with the message type sensor msgs/Imu.

F110.launch

In order to use Hector SLAM to map and localize within
the environment, a SLAM launch file has to be executed. The
launch file f110 is a SLAM launch file modified to work with
the rest of the code in the F1/10 unit. It starts multiple nodes
related to SLAM and defines relevant transforms between
coordinate systems. The SLAM nodes use the lidar data to
estimate the pose of the F1/10 unit and publish the calculated
data in the topic slam out pose with the message type
PoseStamped.

Gotocontrol

Gotocontrol contains the HL controller and LL controller.
However it is not a node, it is just a script containing
methods which can be used by other nodes. It subscribes
to the topic slam out pose to get position data to calculate
the HL output uHL. The output is converted to the PWM
value in the interval [-100,100] and is then published in the
topic drive parameters. The design parameters for the PD
controller can be edited in this file.

Trajectory

The desired trajectory calculated is stored in the text file
trajectorydata.txt. Trajectory reads the position data of
the desired trajectory and call the goto function with the next
desired trajectory point.

Record

Record is a node that allows the user to start and stop
recording data and also erase old data from positions.txt.
After starting the node, press r to record data, t to stop redord
data and e to erase old data.

Kill

Kill is a node that is used to kill the communication
between the ROS nodes and the Teenzy. If emergency stop
is activated, the Teenzy does not react to new data sent to it.

Running rviz on remote laptop

To visualize data running on the F1/10 unit on a remote
laptop the ROS environment has to be properly set up on
both devices. First, the IP address of both the Jetson and
the remote laptop has to be set to static. Assume that the
ip address of the Jetson is 192.168.x.y and that the ip address
of the remote laptop is 192.168.w.z. SSH into the Jetson from
the remote laptop by typing ssh username@192.168.x.y −X



10 AUTONOMOUS MULTI-LANE DRIVING

in the terminal on the remote laptop. In order to transfer all
data running in ROS on the Jetson to the remote laptop the
ROS MASTER URI, ROS HOSTNAME and ROS ID has
to be set up on both devices. This is done be entering the
following commands in the terminal:

Jetson:
export ROS MASTER URI=http://192.168.x.y:11311
export ROS HOSTNAME=192.168.x.y
export ROS IP=192.168.x.y

Remote laptop:
export ROS MASTER URI=http://192.168.x.y:11311
export ROS HOSTNAME=192.168.w.z
export ROS IP=192.168.w.z

These commands has to be repeated in every new terminal.
A suggestion is to put the above commands along with
sourcing the catkin workspace in the ∼ /.bashrc file so that it
is executed in every terminal. Now the data running in ROS
on the Jetson can be used in the remote laptop to visualize the
F1/10 unit using rviz.

REFERENCES

[1] Y. Du, Y. Wang, and C. Chan, “Autonomous lane-change controller,” in
2015 IEEE Intelligent Vehicles Symposium (IV), June 2015, pp. 386–393.

[2] (2018) Auto lane change. [Online]. Available: https://www.tesla.com/
sites/default/files/model s owners manual north america en us.pdf

[3] Evans and Peters, “Cooperative adaptive cruise control: Human factors
analysis,” 2013.

[4] I. Akkaya, D. J. Fremont, R. Valle, A. Donzé, E. A. Lee, and S. A. Seshia,
“Control improvisation with probabilistic temporal specifications,” CoRR,
2015.

[5] D. J. Fremont, A. Donzé, and S. A. Seshia, “Control improvisation,”
CoRR, 2017.

[6] F. Klaesson. (2018) F110 github. [Online]. Available: https://gits-15.sys.
kth.se/filipkl/F1tenth

[7] (2018) F110 website. [Online]. Available: http://f1tenth.org/
[8] M. Obayashi, K. Uto, and G. Takano, “Appropriate overtaking motion

generating method using predictive control with suitable car dynamics,”
in 2016 IEEE 55th Conference on Decision and Control (CDC), Dec
2016, pp. 4992–4997.

[9] B. Schurmann, D. Hess, J. Eilbrecht, O. Stursberg, F. Koster, and M. Al-
thoff, “Ensuring drivability of planned motions using formal methods,” in
2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), Oct 2017, pp. 1–8.


