

Planning and Optimization for Multi-Robot Planetary Cave Exploration under Intermittent Connectivity Constraints

Filip Klaesson¹, Petter Nilsson¹, Tiago Vaquero², Scott Tepsuporn², Aaron D. Ames¹, Richard M. Murray¹

¹California Institute of Technology ²Jet Propulsion Laboratory, California Institute of Technology

October 21, 2020

DARPA Subterranean Challenge

Plan Requirements

Synthesize a behavioural plan Π that

- sends robots to frontiers to perform exploration
- periodically updates the base station about the progress
- distributes the plan itself to robots

DARPA Subterranean Challenge ntermittent Connectivity Planner

Plan Executive Results

Plan

Plan $\Pi = (\Pi_t, \Pi_c)$ consist of two components

- trajectory collection $\Pi_t = \{s_0^r s_1^r \dots s_T^r\}$
- communication collection $\Pi_c = \{(t, r, r', b)\}$

Cost $C(\Pi)$ of plan $\Pi = (\Pi_t, \Pi_c)$

$$\mathcal{C}(\Pi) = \sum_{r \in R} \sum_{t=0}^{T-1} ar{C}_t(s_t^r, s_{t+1}^r) + \sum_{(t, r, r', b) \in \Pi_c} ar{\mathcal{C}}_t(s_t^r, s_t^{r'}),$$

 $\bar{C}_t(s, s')$: mobility cost $\tilde{C}_t(s, s')$: communication cost

Information-Consistency

Information-Consistency: robots remain idle until received plan

Definition

Let a subset of robots $R_m \subset R$ be master robots that have knowledge of information m at time t = 0. A plan $\Pi = (\Pi_t, \Pi_c)$ is information-consistent if:

- A robot without information *m* does not move;
- A robot without information *m* does not send information

Plan Decomposition

Plan Decomposition

Problem (Pre-exploration planning)

Devise an information-consistent multi-robot plan $\Pi = (\Pi_t, \Pi_c)$, using the base station as master, such that

$$-C(\Pi) + \sum_{s \in S_f} \begin{cases} \Re(s,k), & \text{if } \sum_{r=1}^R \mathbf{1}_s(s_T^r) = k, \\ 0, & \text{otherwise}, \end{cases}$$

is maximized.

Plan Decomposition

Problem (Pre-exploration planning)

Devise an information-consistent multi-robot plan $\Pi=(\Pi_t,\Pi_c),$ using the base station as master, such that

$$-C(\Pi) + \sum_{s \in S_f} \begin{cases} \Re(s,k), & \text{if } \sum_{r=1}^R \mathbb{1}_s(s_T^r) = k, \\ 0, & \text{otherwise,} \end{cases}$$

is maximized.

Problem (Post-exploration planning)

Devise an information-consistent multi-robot plan Π , using R_m as master robots, such that the base station receives information b for all $b \in R_f$, and such that

is maximized.

Intermittent Connectivity Problems

The intermittent connectivity problem is to maximize an objective whilst satisfying intermittent connectivity constraints.¹

Inputs: Network \mathcal{N} , master robots R_m , initial positions s_0^r , connectivity constraint (src, snk), optimization objective, time horizon \mathcal{T} .

Output: Information-consistent plan $\Pi = (\Pi_t, \Pi_c)$ that satisfies the intermittent connectivity constraint.

COPS: Python stack solving intermittent connectivity problems.²

¹Klaesson et al. 2019. Intermittent connectivity for exploration in communication-constrained multi-agent systems.

COPS available at https://github.com/FilipKlaesson/cops

Plan Executive: Business Process Model Notation

Symbol	Action
0	Start Event: Starts a process.
0	End Event: Ends a process.
0	Terminate End Event: Terminates all processes.
0	Error Boundary Event: Triggered if an task error occurs.
	Signal Throw Task: Throws a specific signal.
0	Signal Catch Event: Catches a specific signal.
_ <u>⊗</u>	Exclusive Gateway: Proceeds with first input- process.
- -	Parallel Gateway: Breaks one process into multiple processes, and merge multiple processes into one pro- cess by waiting for all input-processes.
•	Service Task: Performs a task when triggered by a process.

Plan Executive: Business Process Model Notation

Symbol	Action
0	Start Event: Starts a process.
0	End Event: Ends a process.
0	Terminate End Event: Terminates all processes.
0	Error Boundary Event: Triggered if an task error occurs.
	Signal Throw Task: Throws a specific signal.
0	Signal Catch Event: Catches a specific signal.
_ <u>⊗</u>	Exclusive Gateway: Proceeds with first input- process.
- -	Parallel Gateway: Breaks one process into multiple processes, and merge multiple processes into one pro- cess by waiting for all input-processes.
•	Service Task: Performs a task when triggered by a process.

Detail: Communication Action

Distinguish between *internal* communication among robots within a location and *external* communication across communication edges.

• PreIntCom
$$(t, r) = \{(t, r_1, r_2, b) : r \in \{r_1, r_2\} \land s_t^{r_1} = s_t^{r_2} \land r_2 = l_t^{s_t^{r_1}}\}$$

•
$$\text{ExtCom}(t, r) = \{(t, r_1, r_2, b) : r \in \{r_1, r_2\} \land s_t^{r_1} \neq s_t^{r_2} \land r \in L_t\}$$

• PostIntCom
$$(t, r) = \{(t, r_1, r_2, b) : r \in \{r_1, r_2\} \land s_t^{r_1} = s_t^{r_2} \land r_1 = l_t^{s_t^{r_1}}\}$$

Simulation setup

- COPS Simulation
 - Discrete graph
 - Explore scalability properties

DARPA Subterranean Challenge Intermittent Connectivity Planner Plan Executive Results

- High-Fidelity Simulation
 - Integrated with full autonomy stack

COPS Simulation

DARPA Subterranean Challenge Intermittent Connectivity Planner Plan Executive Results

Results

Conclusion & Future Work

Conclusions

- Information-consistent plans ensure feasible information distribution
- Communication protocol minimize low-bandwidth communication
- BPMN plan executive
- Less robot transitions and shorter exploration time

Conclusion & Future Work

Conclusions

- Information-consistent plans ensure feasible information distribution
- Communication protocol minimize low-bandwidth communication
- BPMN plan executive
- Less robot transitions and shorter exploration time

Intermittent connectivity constraints is suitable for large-scale multi-robot exploration in communication-constrained environments

Conclusion & Future Work

Conclusions

- Information-consistent plans ensure feasible information distribution
- Communication protocol minimize low-bandwidth communication
- BPMN plan executive
- Less robot transitions and shorter exploration time

Intermittent connectivity constraints is suitable for large-scale multi-robot exploration in communication-constrained environments

Future work

- Adding redundancy to the plan to cover robot failure
- Consider transition time when planning to allow for significantly varying transition times